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Horizontal fractionation of rising and sinking 
particles in wind-affected currents 
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The different rise or sinking velocity for different sizes or types of particles gives 
different vertical sampling of a wind-affected shallow-water flow. This paper derives 
a mathematical model for the consequent horizontal fractionation of a dilute suspen- 
sion of particles when the flow is a wind-influenced perturbation from the classical 
logarithmic open-channel flow. Simple approximations are given for the effective 
horizontal velocity and for the shear dispersion tensor which preserve the perfect 
duality between the sensitivity of sinking particles to bed stress and the sensitivity of 
rising particles to surface stress. 

1. Introduction 
As the size of industries and the populations of cities increase, issues of pollution 

become more and more serious. Much of the pollution is disposed of into lakes, 
rivers or coastal waters. Some pollutants (e.g. highly radioactive actinides) attach 
to particulate matter already present in the water. Other pollutants (e.g. sewage 
sludge) are already in particulate form. An important facet of the understanding and 
prediction of water pollution levels is to quantify any fractionation of the different 
particles (see figure 1). 

For open-channel flow with a (quasi-turbulent) logarithmic velocity profile, Sumer 
(1974) and Smith (1986) calculated how the sinking velocity of particles reduces the 
effective longitudinal speed and increases the longitudinal dispersion of the particles. 
For a parabolic velocity (quasi-laminar) flow model Smith (1991) quantified the role 
of wind in the two-dimensional horizontal fractionation. The purpose of this paper 
is to present the unexpectedly neat results for a logarithmic velocity profile. For the 
particle movement and spreading there is perfect duality between the sensitivity of 
sinking particles to bed stress and the sensitivity of rising particles to surface stress. 

2. Equations and boundary conditions 
For simplicity, we shall focus upon particles of small size and discharges of modest 

buoyancy input for which the flow, turbulence and biochemical decay rates can be 
regarded as being given. No allowance is made for any modification by individual 
particles to the local structure of the turbulence, nor for changes by the overall weight 
of particles to the global structure of the flow (Dyer & Soulsby 1988). Also, we shall 
assume that the bed is locally flat ( z  = -h) and that any time dependence takes place 
more slowly than vertical mixing. The water velocity is represented as 

( U ( Z ) ,  4 z ) ,  0). (2.1) 
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FIGURE 1. Fractionation of rising and sinking particles in wind drift. 

The particles are categorized in terms of the rise velocity W relative to the water. The 
turbulent mixing process is modelled in terms of eddy diffusivities with components 
~ ~ ( z ) ,  K ~ ( z ) ,  I C ~ ( Z )  in the x ,y , z  coordinate directions. Biochemical decay a(z)  can be 
related to the penetration of sunlight. The particle release rate in the fluid is denoted 
q(x ,y , z , t ) .  On the free surface there is zero flux of particles, while at the bed the 
settling flux is assumed to be proportional to the particle concentration. Thus, the 
particle concentration or mass fraction c(x, y ,  z ,  t )  is assumed to satisfy the equations 
and boundary conditions : 

(2.2a) dtc  + ac + ud,c + uq,c + w d , ~  - K ~ ~ ; c  - x2a,2c - d z ( ~ 3 d z ~ )  = q, 

with 

and 

The settling coefficient p ranges from zero (non-absorbing) to infinity (totally ab- 
sorbing). The bed source q(-) allows for resuspension of previously settled material. 
Empirical formulae for the pick-up function q(-) in terms of material and flow 
parameters are reviewed in van Rijn (1984). 

In the important special case of turbulent open-channel flow, correct to order q(-), 
the velocity profile is logarithmic (as illustrated in figure 1) and the vertical eddy 
diffusivity is parabolic: 

u ( z ) = ~ i { 1 + ~ [ 1 + l n q ] } - - { ( ~ [ 1 + l n q ] + [ 1 + l n ( l - q ) ] } ,  

W C - K ~ ~ , C  = O  on z = 0, (2.2b) 

rc3dZc - wc = bc + q(-) on z = -h. (2.2c) 

(2.3a) 

(2.3b) 

Ic3(Z)  = k h u q ( 1 -  q) ,  ( 2 . 3 ~ )  

71 

ku. 

u ( z ) = ~ { 1 + ~ [ 1 + l n ~ ] } - ~ { ~ [ 1 + l n q ] + [ 1 + l n ( l - q ) ] } ,  7 2  

with 

(2.3e) 

u:' = ~ ~ ( k Z i u ,  - ~ 1 ) ~  + e2(k6u, - ~ 2 ) ~  + 7: + 7;. (2.3f 1 
Here (a, 6) is the vertically averaged velocity, ( p z l ,  p72) is the surface wind stress, u+ is a 
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turbulence velocity scale, k is von Khrman’s constant (about 0.4), a dimensionless 
bed roughness and q(+) a dimensionless surface roughness. Both $1 and q(+) are 
exceedingly small (about 0.001). The definition (2.3e) of the small parameter E (about 
1/6) ensures that, correct to order $1, the velocities are zero at the bed. 

As is suggested by the u, notation, in the absence of wind the turbulence velocity 
scale u. is the usual friction velocity ck(Zi2 + U2)l l2. The right-hand side of equation 
(2.3f) is the sum of the squares of stresses at the bed and at the surface, so gives 
equal importance to turbulence generation at both sites. For small E~ but arbitrary 
sized other terms, a uniformly valid approximation for u. is 

4 4 -2  u* = { [4(4 + &1 + E ~ )  + E k (u  + U2)2] 1’2 + ;c2k2(Zi2 + v2) 

2 [4(4 + zi)(l + c2)  + z4k4(Zi2 + $ ) 2 ]  1/2’ 

To take a more complete account of the effect of wind, additional equations would be 
needed to allow for symmetry breaking in the wind-driven contribution to the velocity 
profile (2.3a, b), in the turbulence structure (2.3~) and in the turbulence magnitude 
(2.3f 1. 

3. Allowing for sinking of particles 
In the absence of settling at the bed ( p  = 0) there is an equilibrium concentration 

profile y(z) (normalized to have vertical average 7 = 1) in which there is a balance 
between upwards rise W and vertical mixing 7c3. For turbulent flow with the parabolic 
eddy diffusivity distribution (2.3c), Rouse (1937) derived the power-law concentration 
profile 

W 
ku, 

P sin nP [ l y q ]  , withP=-- .  y ( r l ; P ) = p  - (3.la, b)  

Rising particles tend to have greater concentration near the free surface while sinking 
particles have greater concentration near the bed (see figures 1 and 2). For P less 
than -1 the particles are too heavy to remain in suspension. Conversely, for P greater 
than +1 the particles are too buoyant to remain in suspension. At different times 
or places, gradual variations in u* would cause variations in the vertical profile of 
particles with a given rise velocity W .  

Although experiments conducted by Coleman (1970) extend well below P = -1 and 
suggest that 7c3 does not tend to zero at the free surface, he shows that the parabolic 
diffusivity (2.3~) does give a reasonable fit to the widely scattered experimental data. 
Dyer & Soulsby (1988, figures 8, 9, 10) illustrate that several alternative models yield 
closely similar results for the mass of sediment transported and for the drag at the 
bed. As is further elaborated here, the model (2.3~-f) has the advantage of exact 
solutions. 

In the context of a chromatographic technique known as field flow fractionation, 
Giddings (1968) exploited the fact that (in the absence of settling) the non-solute 
character, embodied in the rise velocity W ,  can be factored out via the reference 
profile y :  

(3.2) 
The field equation satisfied by m is as if there were a horizontal velocity ( yu , yv )  and 
eddy diffusivities y7cl, y7c2, yrc3 i.e. equation (2 .2~)  with modified coefficients. In the 

c(x, Y ,  z, t )  = y(z)m(x, Y ,  2 ,  t) .  



328 

1.0 7- -. . 

0.8 - 
2 

-2 
E o.6 - 

& .3 0.4 - 

0.2 - 

R. Smith 

I 
. ~ . . .  . . - - .  . . . . - -  ' 4  . -  

' \  \\ 
' \  ' /  
' -2' 

0 
/ I  
a, 

\ .  
,. . \  

. .  
: 

.' 

----_.._ 
- - _ _  - _  

_ '  \, 
I '  // "v 

.,' 9 

I I -7 

-1 .o -0.5 

1 .O 

Rise velocity, P= W/ku* 

-4 - 

FIGURE 3. Difference in velocity between solute and particles. The dashed curves give the simple 
approximation (3.4). 

absence of settling at the bed, m(x, y, z ,  t )  eventually becomes vertically uniform and 
is carried along at the horizontal velocity (yU, yV). 

For turbulent open-channel flow without wind the e-folding distance for vertical 
mixing is 1.25h(U/u,), i.e. the bulk speed U divided by the temporal mixing rate 
L1 (Smith 1986, equation 7.2~) .  Sumer (1974, equation 35) gives a formula for yU 
involving the psi (digamma) function Y .  The extension to include wind is 

kiiu, - 71 yu = Zi+& ( ku* ) [1+ Y(1 + P ) -  Y(2)] - 5 [ 1 +  Y(1 - P ) -  Y(2)l. (3.3) 
ku, 

There is updown duality between the bed stress and surface stress terms. To a 
reasonable degree of accuracy (see figure 3) we can use the empirical approximation 

P ( 3  - P )  
U* 

(3.4) 

Rising particles ( P  positive) move faster than ii and with the wind, while sinking 
particles ( P  negative) travel more slowly than ii and against the wind. 
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FIGURE 4. Modification yo to the concentration profile because of settling at the bed. The effective 
discharge strength is scaled by this same function. 

4. Allowing for settling at the bed 
The extra complication of settling at the bed (p  # 0) is analogous to heat transfer 

(Sankarasubramanian & Gill 1973; Lungu & Moffatt 1982). There is an additional 
exponential decay rate l o  and an adjustment wo(z) in the shape of the equilibrium 
concentration profile (normalized to have $ = 1). For turbulent open-channel flow, 
with E small, the near vanishing of 1c3 towards the bed allows the possibility of a 
boundary-layer type of correction (Smith 1986, $6) similar to that of the velocity 
profile (see figure 4) with a decay rate l o  proportional to the drag: 

1 B 

l + B  1 + B  
wo = - +-{1+E[Y(2)- Y (1 + P ) + In q]  } + . . . , (4 .1~)  

ulB Pa 
U? 

+... with B = -. 
= hii( 1 + B )  

(4.1 b, c) 

The parameter B is a non-dimensional measure of the probability that a particle 
which reaches the bed becomes permanently attached to the bed. In the limit of 
total retention ( B  tends to infinity) the exponential decay rate l o  corresponds to a 
downstream distance ~ ( U / U , ) ~ .  This is much further than the e-folding distance for 
vertical mixing. Thus, if settling at the bed is important then the length or time scales 
are long enough that there will have been thorough vertical mixing. 

By analogy with the Giddings (1968) factorization (3.3), we write 

c(% y ,  z 7  t) = y(z)~o(z)b(x7  y7 z, t).  (4.2) 

The field equation satisfied by the variable b is as if in equation (2.2~)  there were 
a horizontal velocity (yy iu ,  yy$) and eddy diffusivities yy;rc1, yy:ic2, yy:lc3. The 
complications of vertical drift and bed absorption are accounted for in the yy: 
factors. The notable change (Barton 1984) is that the effective source strengths in the 
fluid and at the bed are the products yoq and ~&)q(-) where the minus superscripts 
indicate values at the bed. Hence, there is permanent sensitivity to the height of 
release. In the limiting case p tends to infinity, particles discharged near to the bed 
would settle immediately and the effective source strength would be zero. 

We remark that to leading order in E the weight factor y: does not change the 
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effective longitudinal velocity yy& So, equation (3.4) or figure 
whether or not there is settling. 

- 

5. Shear dispersion 
For solutes the theory of shear dispersion is long established 

1959). After vertical mixing of b(x, y ,  z, t )  has been achieved, the 
tion 

co(x, y7 t ,  = 

satisfies the two-dimensional advection diffusion equation : 

3 remain applicable 

(Taylor 1953; Elder 
weighted concentra- 

atco + [a + /2o]co + yWo2UdxCo  + ywoz"ayco - [ D l l  + Y Y i K l ]  a;co 

-2D12dxdyco - [ 0 2 2  + Y Y ~ K Z ]  8;co = yo4 + Y O  (-1 4 (-1. (5.2) 

The shear dispersion coefficients Dll ,  D12, 0 2 2  can be written as integrals of the 
velocity profiles : 

(5.3a) 

(5.3c) 

For parabolic wind-affected velocity profiles and constant vertical eddy diffusivity 
Smith (1991 , equations (7.3), (7.4)) evaluated these integrals numerically. 

For a uni-directional turbulent open-channel flow without wind (zl = 0) and 
without bed absorption ( B  = 0), Smith (1986) derived a series formula for the shear 
dispersion coefficient D11. Grouping bed and surface stress terms separately, we write 
the two-dimensional and wind-driven generalization: 

D22k3 kvu, - z kBu, - 72 

hu, 
The explicit formulae for the bed stress, mixed and surface stress coefficients are 

(5.5a) 
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FIGURE 5. Dispersion coefficients for joint wind and bulk flow. The dashed curves give the 
approximation (5.6). 
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(5.5b) 

( 5 5 )  

An empirical approximation (see figure 5 )  for the P-dependent coefficients ae(P) ,  
aw(P) is 

a B ( P )  = aw(-P) = 0.40411 [; - 5 ;] 1'2. 

For the bed stress contribution to the current, the shear is greatest near the bed and 
consequently the shear dispersion is greatest for sinking particles. For the surface stress 
contribution to the current (see figure 1) the shear is greatest near the free surface and 
the shear dispersion is greatest for rising particles (Smith 1991). Remarkably, with 
the simple flow model used here, there is perfect updown duality beginning with the 
eddy viscosity (2.3d) and cumulating with the dispersion coefficients (5.5c), (5.6). 

For the direct turbulence contributions to the horizontal dilution Fischer (1973) 
suggested the formula 

Exact and empirical formulae for the required weighted integrals are 

Icl = Ic2 = 0.2h~,~1/3. (5.7) 

r(' -k - 0.3hu, (-) l + P  . 
2 + P  

ylCl= yIc2 = 0.15hu. 
r(;)r(l + P )  

As was noted in the case P = 0 by Elder (1959), the longitudinal shear dispersion 
coefficients (5.4~-c) are typically a factor k-4 = 39 larger than the direct turbulence 
contribution (5.8). Also, we can estimate that it only requires a cross-flow wind stress 
of order k2u? (i.e. about one sixth of the bottom stress) for the cross-flow shear 
dispersion to be comparable with the turbulent mixing. 
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Line from discharge 

FIGURE 6. Horizontal distributions of rising particles ( P  = O S ) ,  solute ( P  = 0) and sinking 
particles ( P  = -0.5) which were released together (a) with and ( b )  without transverse wind. 

6. Fractionation 
For a sudden point discharge, the concentration distributions from the constant- 

coefficient equation (5.2) are exactly elliptical. If the mean current (a, is), wind 
stresses (zl, z2), and particle rise velocity W are all specified, then equations (2.4), 
(3.4), (5.3), (5.5b), (5.6) enable us to determine the wind-modified friction velocity 
u,, effective horizontal velocity ( j ~ ,  yV) and the shear dispersion coefficients D l l ,  

D12, D22. Specifying the quantity discharged and the elapsed time determines the 
elliptical concentration contours. Figure 6 gives the standard deviation contours, 
( a )  with and (b)  without transverse wind, at a time 10h/ek2ti after discharge. To 
avoid overlapping between the two cases, the initial discharge positions are laterally 
separated (as indicated by the dot-dash lines along the bulk flow from the discharge). 
The mean current is assumed to be in the x-direction (0 = 0) and the wind is only 
in the y-direction (zl = 0). The slight change of alignment of the ellipses when 
there is wind can be linked to the flow at different depths. Particles of a given rise 
velocity W which happen to have spent more time relatively deep in the water have 
experienced less of the bulk flow and some of the wind-related return flow, so get 
displaced to negative x and y .  Conversely, particles which happen to have spent more 
time relatively close to the surface experience more both of the bulk flow and of the 
wind drift, so get displaced to positive x and y. For stronger winds there would be 
increased lateral separation and increased transverse shear dispersion. So the ellipses 
would be further apart but fatter. 

For a steady discharge the plume for each of the P-classes of particles is extremely 
elongated and can be thought of as being the superposition of the sudden discharges 
at all previous times. For the idealized case of a discharge at distance L from 
a shoreline y = 0 with constant depth and constant longshore current, correct to 
leading order in e the shoreline concentration is 

with 

2 D22+?4X2 a =2x - 
U 

(6.lb) 
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FIGURE 7. Relative concentrations on the shoreline for steady discharges of rising particles 

(P = 0.5), solute ( P  = 0) and sinking particles (P = -0.5) in a weak offshore wind. 

(Smith 1991, equation (8.3)). Here Q ( P )  is the source strength, x is the alongshore 
distance from the discharge. Figure 7 compares the shoreline concentrations when 
there is neither decay CI in the fluid nor loss 20 to the bed for the particle types 
P = -0.5,0,0.5 when there is a weak offshore wind with strength 7 2  = 0 . 2 ( h / L ) ( ~ k U ) ~ .  
For simplicity it is assumed h / L  <. 1, k4 so the wind modification to u. is ignored 
and 0 2 2  is neglected relative to yIc2. An offshore wind eventually brings a greater 
proportion of sinking material ( P  = -0.5) to the shoreline than for solutes ( P  = 0), 
while rising material ( P  = 0.5) either reaches the shoreline at relatively short longshore 
distances or is carried offshore by the wind-driven flow. Figure 8 shows that if the wind 
direction is reversed 72 = -0 .2(h /L) (~kU)~,  then there is not an exact interchange of the 
relative concentrations for rising and of sinking particles (i.e. there is P-dependence 
(3.4) and (5.8) of the drift velocity and of the mixing rate). Curiously, the longshore 
positions of maximum concentrations are precisely the same in figures 7 and 8 (Smith 
1991, equation (8.4a), though the proportions of particles reaching the shoreline 
are markedly different. In stronger winds or weaker currents, the positions and 
proportions for the horizontal fractionation would be more marked. 
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